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Flow simulations in porous media involve a wide range of strongly coupled scales. 
The length scale of short and narrow channels is on the order of millimeters, 

while the size of a simulation domain may be several kilometers (the richest oil 
reservoir in Saudi Arabia, Ghawar, is 280 km x 30 km). The permeability of rock 
formations is highly heterogeneous and may span several orders of magnitude, from 
nearly impermeable barriers to high-permeable flow channels. For such complex 
systems fully resolved simulations become computationally intractable. To address 
this problem we developed the new multilevel multiscale mimetic (M3) method [1]. 
This method posseses several distinctive features that lead to more reliable, robust, 
and efficient simulations of subsurface flows: 

Upscaled model. Using the same mathematical model with averaged parameters 
to perform simulations at a much coarser scale does not adequately capture 
the influence of the fine-scale structure. In contrast, the M3 method constructs 
a hierarchical sequence of coarse-scale models, which provides a framework to 
capture fine-scale effects more accurately.

Multilevel hierarchy. Many different model upscaling approaches have been 
proposed [2,3]. All of these methods, except the multilevel upscaling (MLUPS) 
method [3], consider a two-level structure: coarse- and fine-scale grids. Using 
a two-level structure most multiscale methods achieve a coarsening factor of 
approximately 10 in each coordinate direction, while the trends in fine-scale 
realizations of large reservoirs require a coarsening factor of 100 or more. Using the 
multilevel hierarchy of the M3 method we achieve large coarsening factors with small 
computational cost.

Locally conservative velocity field. A multilevel framework was developed in the 
MLUPS method, but this approach does not produce conservative velocity fields. 
This is a crucial requirement for modeling two-phase flows, as these are described 
by a coupled system of equations for pressure (elliptic) and water saturation 
(hyperbolic). The M3 method provides locally conservative velocity fields on all 
scales, which guarantees local mass conservation.

Algebraic nature. We merge two computational strategies that were never used for 
two-phase flow simulations. The first strategy is the algebraic coarsening developed 
by Y. Kuznetsov that reduces the degrees of freedom inside a coarse-grid cell 
[4]. The second is a novel approach to conservative coarsening of velocities on 
the edges of a coarse-grid cell. These complementary strategies ensure that the 
coarse-scale system has the same sparsity structure as the fine-scale system, which 
naturally leads to a multilevel algorithm. Due to its algebraic nature, the method 
can be adapted to other fine-scale discretizations, such as the mixed finite element 
and finite volume methods and can handle full permeability tensors and general 
polygonal meshes.

Conservative coarsening. The conservative coarsening procedure is defined 
by velocity coarsening parameters. These parameters play a critical role in the 
accuracy of the M3 method. We implement a black-box, problem-dependent, and 
computationally inexpensive strategy to estimate them. In most multiscale methods 
the specific parameters that define the coarsening procedure are computed at the 
initial time step, with high accuracy, and are not changed during the simulation. Our 
numerical experiments demonstrate that it is important to update these parameters 
in time, even with moderate accuracy, Thus we propose to update our velocity 
coarsening parameters a few times during the simulation (e.g., every 500 time 
steps) using an efficient algebraic multigrid algorithm with a modest convergence 
tolerance. With this update strategy the error in the M3 solution is comparable to 
the error in the fine-scale solution.

The M3 method has been applied to the upscaling benchmark from the 10th SPE 
comparative solution project. We simulated flow in the fluvial layer shown in Fig. 1. 
(left) with the five-spot well configuration shown in Fig. 2 (right). The permeability 
field has large channelized structures, which is a challenging problem for multiscale 
methods. To discretize this system in time we use the IMPES time discretization 
scheme (implicit pressure and explicit saturation). The saturation is updated using 
the Darcy velocities provided by the pressure solver.

The numerical results demonstrate that with a large coarsening factor, such as 30, 
the M3 solution is close to the fine-scale solution (see Fig. 2).  In other numerical 
tests for larger problems we implement more aggressive coarsening with a factor of 
64, and also observe good agreement with the fine-scale solution. The M3 method 
speeds up the pressure solver up to 80 times, and the overall simulation eight 
times, with respect to the fine-scale simulation.
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Fig. 1.  The absolute permeability, K, of the 68th layer in an SPE benchmark 
model (left). Locations of the injector (x) and the producers (o) (right).

Fig. 2.  The water saturation in the two-phase immiscible flow model after 880 
days with injection of 200 ft3 of water per day. The multiscale solution (right) 
preserves important features of the fine-scale solution (left). The pressure equa-
tion was solved on 7 x 2 and 220 x 60 meshes, respectively. The speedup of the 
pressure solver is 60 times.


